Tracking a solar eruption through the Solar System

15 August 2017

Ten spacecraft, from ESA’s Venus Express to NASA’s Voyager-2, felt the effect of a solar eruption as it washed through the Solar System while three other satellites watched, providing a unique perspective on this space weather event.

Tracking a solar eruption through the Solar System

Scientists working on ESA’s Mars Express were looking forward to investigating the effects of the close encounter of Comet Siding Spring on the Red Planet’s atmosphere on 19 October 2014, but instead they found what turned out to be the imprint of a solar event.

While this made the analysis of any comet-related effects far more complex than anticipated, it triggered one of the largest collaborative efforts to trace the journey of an interplanetary ‘coronal mass ejection’ – a CME – from the Sun to the far reaches of the outer Solar System.Although Earth itself was not in the firing line, a number of Sun-watching satellites near Earth – ESA’s Proba-2, the ESA/NASA SOHO and NASA’s Solar Dynamics Observatory – had witnessed a powerful solar eruption a few days earlier, on 14 October.

SOHO’s view

NASA’s Stereo-A not only captured images of the other side of the Sun with respect to Earth, but also collected in situ information as the CME rushed passed.

Thanks to the fortuitous locations of other satellites lying in the direction of the CME’s travel, unambiguous detections were made by three Mars orbiters – ESA’s Mars Express, NASA’s Maven and Mars Odyssey – and NASA’s Curiosity Rover operating on the Red Planet’s surface, ESA’s Rosetta at Comet 67P/Churyumov–Gerasimenko, and the international Cassini mission at Saturn.

Hints were even found as far out as NASA’s New Horizons, which was approaching Pluto at the time, and beyond to Voyager-2. However, at these large distances it is possible that evidence of this specific eruption may have merged with the background solar wind.

“CME speeds with distance from the Sun is not well understood, in particular in the outer Solar System,” says ESA’s Olivier Witasse, who led the study.

“Thanks to the precise timings of numerous in situ measurements, we can better understand the process, and feed our results back into models.”

The measurements give an indication of the speed and direction of travel of the CME, which spread out over an angle of at least 116º to reach Venus Express and Stereo-A on the eastern flank, and the spacecraft at Mars and Comet 67P Churyumov–Gerasimenko on the western flank.

From an initial maximum of about 1000 km/s estimated at the Sun, a strong drop to 647 km/s was measured by Mars Express three days later, falling further to 550 km/s at Rosetta after five days. This was followed by a more gradual decrease to 450–500 km/s at the distance of Saturn a month since the event.

Source: ESA

Comment this news or article